
Even More Java

Java Packages

� What is a package?

� Definition: A package is a grouping of
related types providing access protection and
name space management. Note that types

refers to classes, interfaces, enumerations,
and annotation types. (Java’s Definition)

Java Packages

� Access Protection means that using a
package, as I showed last time, we can use
different interfacing which can limit usage to
within the package

� Name space management essentially means
controlling scope. For example there is
already a defined Vector class. There is no
name conflict with your own because its in
the Java.util package

Creating a Package

� Choose a name for your package

� Every source file must have package <name> as
the first line of the file.

� Make sure you follow naming conventions on
the next slide

Package Naming Conventions

� Packages have a naming convention
� The name is lower case so it isn’t confused with a

type or interface

� Often companies use the reverse of their domain
name, ie com.example.orion

� All provided packages start with java. Or javax.

� Some cases the plain internet address cannot be
used, usually we add an underscore; ie
clipart-open.org -> org.clipart_open,
free.fonts.int -> int_.fonts.free,
poetry.7days.com -> com._7days.poetry

Using Package Members

� There are 3 ways to access a public package
member from outside the package
� Use the full qualified name, ie

Java.util.Vector v = new Java.util.Vector()

� Import the package member, ie
import Java.util.Vector;

Vector v = new Vector()

� Import the package, ie
import Java.util.*;

Vector v = new Vector()

� The last option is usually discouraged for
using a single class.

Apparent Hierarchies

� Sometimes it appears that some classes are
contained in a package when in truth they
aren’t; ie import java.awt.* will not import
java.awt.color

� Therefore always look at your API

Name Ambiguities

� Should you ever import a package with an
identical class name you must then qualify
you classes to avoid ambiquity.

� For example, if on your last assignment you
had imported java.util.Vector, every time you
declared a vector you would have to qualify.
Vector v = new Vector() is now ambiguous.

Static Import Statement

� If you want to import the static methods and
fields of a class you can do this.

� For example, java.lang.Math contains a static
PI field. If you wanted to import this simply
type import static java.lang.Math.PI or as a group
import static java.lang.Math.*

� Overusing static imports tends to make your
code unreadable so use them sparingly

Managing Files

� When using packages, the class
graphics.Rectangle should be in the directory
/graphics/Rectangle

� Both your .java and .class files should be in
this directory structure, but they don’t have to
be the same one

� You can change your classpath

ClassPath

� Both the compiler and the JVM use your classpath

� The compiler will create directories based on packages for you

� You can change your classpath easily

� To display the current CLASSPATH variable,
� In Windows: C:\> set CLASSPATH

� In Unix: % echo $CLASSPATH

� To delete the current contents of the CLASSPATH variable
� In Windows: C:\> set CLASSPATH=

� In Unix: % unset CLASSPATH; export CLASSPATH

� To set the CLASSPATH variable,
� In Windows: C:\> set CLASSPATH=C:\users\george\java\classes

� In Unix: % CLASSPATH=/home/george/java/classes; export
CLASSPATH

Class Naming Conventions

� Class names should be nouns, in mixed case
with the first letter of each internal word
capitalized. Try to keep your class names
simple and descriptive. Use whole words-
avoid acronyms and abbreviations (unless
the abbreviation is much more widely used
than the long form, such as URL or HTML).

Variable Naming Conventions

� Variable names should be short yet
meaningful. The choice of a variable name
should be mnemonic- that is, designed to
indicate to the casual observer the intent of
its use. One-character variable names should
be avoided except for temporary "throwaway"
variables. ie., float length, int height

� Some conventions say all private variables
should start with an underscore, others don’t.
ie., private float _lentgth; private int _height

Other Naming Conventions

� Methods should be verbs, in mixed case with
the first letter lowercase, with the first letter of
each internal word capitalized. ie., run(),
runFast(), getBackground()

� Constants should be declared in all capitals
seperated by underscores. ie., static final int
MIN_WIDTH = 4; static final int MAX_WIDTH = 999;

